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Davies-Jones & Gilman (1971) reported in this Journal on a linear sta,bility 
analysis and second-order initial-tendency calculation for thermal convection 
in a thin rotating annulus heated uniformly from below. The present work gives 
extensive numerical calculations for an annulus model with realistic laboratory 
boundary conditions which extends the previous work into the finite amplitude 
range. The model allows the mode with the longitudinal wavenumber predicted 
to occur at the onset of instability to grow to a finite amplitude and induce 
secondary axisymmetric differential rotation and meridional circulation through 
its Reynolds and thermal stresses, these circulations in turn modifying the 
forcing cells. No higher harmonics are allowed. The Boussinesq equations for the 
fundamental mode and secondary circulations are solved on a staggered finite- 
difference grid in the annulus cross-section, mostly following the scheme laid 
out by Williams (1969). 

Stationary convection is studied for Taylor numbers T < 3 x lo3. The profile 
predicted for the mean circulations in the earlier analysis, that of fast rotation 
in the outer half, slow rotation in the inner half of the annulus (except at  very 
high Prandtl number), together with a four-celled meridional circulation, is 
confirmed. For a given Taylor number T, the differentia.1-rotation energy peaks 
relative to the cell energy at a modest Prandtl number P somewhat less than 
unity, and its production is driven mostly by the Reynolds stresses in the cells. 
Meridional circulation is driven by potential-energy conversion at  high P and 
by Reynolds stresses a t  low P, but retains the same form for all P with increased 
amplitude relative to the cells at  low P. For Rayleigh numbers R a given per- 
centage above the critical value R,, the differential-rotation energy increases 
like T ,  while the meridional circulation remains nearly constant. For given P 
and T differential-rotation relative energy peaks at  modest RIR,, while the 
meridional circulation continues to increase. The induced differential rotation 
tends to distort t he  cell boundaries from tilted straight lines produced by Coriolis 
forces into S shapes qualitatively like the profile of differential rotation itself. 

One example of nonlinear overstable convection is given. The induced dif- 
ferential rotation has time-independent and oscillatory parts. The redistribution 
of momentum is carried out by periodically reversing horizontal and vertical 
Reynolds stresses. 

t The National Center for Atmospheric Research is sponsored by the National Science 
Foundation. 
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1. Introduction 
In  an earlier paper of the same title (hereafter referred to as I) Davies-Jones & 

Gilman (1971) presented a linear stability analysis for thermal convection in 
a thin rotating annulus uniformly heated from below with cross-section of order 
unity. The linear stability solutions were used to calculate initial second-order 
tendencies due to products of perturbation variables. These calculations showed 
that in general a differential rotation and meridional circulation, driven by 
Reynolds and thermal stresses in the cells, should be expected to develop. This 
paper reports nonlinear numerical calculations of the form and magnitude of 
these circulations and their interaction with the cells that force them, for both 
stationary and overstable convection. 

For stationary convection, I predicts the differentia.1 rotation to be positive 
(faster than the rotation rate of the annulus walls) in the outer half of the cross- 
section and negative in the inner half (see figure 1 (a ) ) ,  except at high Prandtl 
number. The meridional circulation has four cells, two above two in the cross- 
section, with rising motion near the centre of the upper half and sinking motion 
near the centre of the lower half (see figure 1 ( b ) ) .  The horizontal and vertical 
momentum transport that produces the initial differential rotation is shown in 
figures 1 (c) and (d )  respectively. Cell vertical transport takes momentum from 
the middle of theinner half of the annulus, and this is then transported horizontally 
across to the outer half, where it is reconcentrated about the middle z level. 
The meridional circulation, through Coriolis forces, reinforces the vertical trans- 
port process. 

As shown in I ,  the Reynolds stresses driving the differential rotation arise 
directly from the effect of Coriolis forces on the transverse rolls of the non- 
rotating case. These produce an immediate correlation between the zonal flow 
u1 and the radial flow v1 in the cells, which in turn, through the conservation of 
mass equation, leads to correlations of u1 with the vertical motion wl, and finally 
of vl with wl. (For a typical cell pattern in the rotating case see figure 5.) For the 
overstable case, the form of the mean circulations were not deduced in I, but 
it was noted they would be more complicated. 

At high Prandtl number P with stationary convection a different differential 
rotation is produced from that shown in figure 1, for which the inner and outer 
halves of the annulus rotate at the same average rate. This differential rotation 
arises only from the action of Coriolis forces on the meridionel circulation, which 
speed up the mid-levels of the outer half of the annulus and slow down the 
regions near the top and bottom, and produce exactly the opposite pattern for 
the inner half of the annulus. 

2. Formulation of the problem and the method of solution 

we seek answers to four questions. 

in the nonlinear case ? 

In  terms of the Rayleigh number R, Taylor number T, and Prandtl number P, 

(i) What kind of differential rotation and meridional circulation are produced 
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FIGURE 1. Annulus cross-section for stationary convection showing general form of (a)  
induced differential rotation, (6) meridional circulation, (c) cell horizontal transport of z 
momentum and ( d )  cell vertical transport of z momentum predicted by I and confirmed 
in this paper. 

(ii) How much circulation is produced, compared with that in the forcing 

(iii) How are these circulations maintained against dissipation by friction '1' 
(iv) How do they react back on the convective cells which produced them T 
As was mentioned in the introduction, paper I, through an initial-tendency 

calculation from second-order correlation of perturbation quantities, gave some 
indication of what kind of circulations would be induced, a little information 
on how they would be maintained, but no indication of how large they would be 
or how they would modify the cells. 

cells ? 

R, T and P are defined in the same manner as in I, namely, 

R = gaA6d3/Kv, T = 4Q2d4/v2, P = V/K, 

in which g is gravity, a the coefficient of volume expansion, A0 the total temper- 
ature difference across the depth d of the annulus, K is the thermal diffusivity, 
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Y the kinematic viscosity and Ll the rotation rate of the annulus. The equations 
to be solved are the standard Boussinesq convection equations in Cartesian 
co-ordinates as given, for example, in I. We solve these equationsfor a thin annu- 
lus of square cross-section, with reasonable laboratory boundary conditions, 
namely, no-slip conditions (zero velocity relative to the rotating frame) on 
the top, bottom and sides, with perfectly thermally conducting top and bottom 
(fixed temperature) and perfectly insulating sides. (In I, for mathematical 
reasons, we assumed a stress-free top and bottom.) Our co-ordinates are x, 
parallel to the annulus walls; y, the inward radial; and z, upwards; with corre- 
sponding velocities u, v and w. Thus the cross-section of the annulus lies in the 
y, z plane. 

The basic solution scheme is as follows. First, we take Fourier transforms with 
respect to x of the equations of motion, thermodynamics and continuity and 
then retain only the wavenumber 0 (the mean circulations) plus a single longi- 
tudinal wavenumber k .  All interactions which produce higher harmonics are 
discarded. We then temporarily suppress all nonlinear terms and solve the linear 
stability equations in y, x and t numerically for the cell variables ul, vl, wl, t31 
and n1 to find the critical Rayleigh number R, and longitudinal wavenumber k:, 
as functions of P and T. We then allow the convective mode with wavenumber 
k: = kc to grow to finite amplitude, produce by the nonlinear stresses a mean flow 
(uo, v,,, wo) and interact with it. The y, x profiles and the amplitudes of the cells, 
then, are allowed to change owing to nonlinear effects, but the longitudinal 
wavenumber remains fixed. It is important to stress that effectively only the 
higher harmonics in the x co-ordinate are suppressed. With the finite differences 
in y and x ,  clearly higher harmonics in these co-ordinates are allowed to develop. 
In  other words, the shears in the induced mean flows, together with distortions 
of the basic temperature profile in y and x ,  are allowed to feed back on the fun- 
damental convection mode. As such, this is more general than the 'shape assump- 
tion 'introduced by Stuart (1958) for the rotating-cylinder problem. Nevertheless, 
suppression of x harmonics of the fundamental wavenumber kc and consequently 
their reaction upon the fundamental, while retaining the mean state, is to a fair 
degree arbitrary. Its validity can really be tested only by numerical integrations 
which include one or more higher harmonics. We may attempt this for certain 
cases in the near future. 

The numerical scheme used is basically similar to that outlined by Williams 
(1969), with the following modifications. The pressure equations were solved 
in early runs by over-relaxation and later by direct matrix inversion using 
Chileski decomposition, rather than by fast Fourier transforms. Certain sym- 
metries are invoked along the bisectors of the cross-section in order to reduce the 
amount of computation. These are consistent with the most unstable linear 
solutions and if imposed initially are preserved by the nonlinear equations, so 
no loss of generality is involved. Otherwise, the same staggered grid that con- 
serves energy in the nonlinear terms is used, as well as leap-frog time advance- 
ment. Calculations were performed for 10 x 10 and 16 x 16 intervals in the cross- 
section, with the time step chosen small enoughto avoid the various computational 
instabilities discussed by Williams. 
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3. Kinetic-energy diagnostic equations 
In  analysing the nonlinear results, we make extensive use of kinetic-energy 

equations for the differential rotation uo, and for the mean meridional circulation 
(vo, wo). These can be derived from the equations of motion for these variables, 
using the boundary conditions to eliminate boundary fluxes. In  condensed 
notation, the differential-rotation kinetic-energy equation is given by 

auilat = A + B+ C- D, (1) 

and the meridional-circulation kinetic-energy equation by 

a(v;+wo)z/at = -A+E+P-G,  
in which 

The integrals are over the cross-section of the annulus, and for unit length in 
the x direction. All variables are dimensionless, with lengths scaled by d, time 
scaled by d 2 / K ,  velocities by K/d  and temperature by A@. 

From (1)-(3) we see that the differential-rotation energy U; can be maintained 
against frictional dissipation D in basically two ways. One is by Coriolis forces 
acting on the meridional circulation, A. The second is by horizontal and vertical 
Reynolds stresses from the convective cells, and (ul wl)o respectively, 
through B and C.  To make the kinetic energy of differential rotation increase, 
these stresses must selectively transport u momentum from regions of small 
(or negative) uo to regions of large so, that is, up the gradient of momentum. 
This is the opposite of a frictional decay process. 

The meridional circulation energy V t +  W; can be maintained against dis- 
sipation G in three ways: (a )  by Coriolis forces acting on the differential rotation 
through - A  ; ( b )  by conversion of potential energy due to rising warm fluid and 
sinking of cold represented by E ;  and (c)  by the stresses (vlwl)o, ( v : ) ~  and ( w : ) ~  
transporting momentum against the gradients of vo and wo, as contained in P. 
Of course Coriolis forces acting on the mean motion simply convert one com- 
ponent of energy to another, but cannot contribute any net energy to the sum 

If the Reynolds stresses supply energy t o  the mean circulations, this energy 
must come from the kinetic energy of the cells themselves. This would be reflected 
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u;+ v;+ w;. 



386 

Potcntial E Meridional 
cncrgy circulation 
o o . 0 1  Po, w* 

P. A .  Gilman 

4 

I 

If 

I 

4 

1 
Convcction Differentia I 

cells rotation 
u,. 1 ' 1 ,  It'! 

FIGURE 2. Schematic diagram of nonlinear energy conversions possible in model, with 
arrows indicating usual direction of this conversion. 

in a cell kinetic-energy equation (not written down), in which B, C and P appear 
with the opposite sign from (1) and (2). The principal maintenance of the cells 
is by the rising of warm fluid and sinking of cold in them. I n  our calculations it 
turns out that only a relatively small fraction of the energy converted in this 
way is needed for the stresses which maintain the differential rotation and 
meridional circulations. Most of it goes directly into dissipation. 

The energy conversion processes possible in the model are summarized graphic- 
ally in figure 2 .  The arrows correspond to the sense of conversion which actually 
oecurs in virtually all cases examined. 

4. Linear instability results 
The critical Rayleigh number R, and longitudinal wavenumber lc, for linear 

instability are shown in figures 3 (a) and (b) .  For stationary convection, the points 
on these curves are found by integration of the equations at each T for several 
wavenumbers at  the two values of R which are estimated initially to straddle 
the stability boundary. The integration is carried on long enough to establish 
a constant growth rate, from which the stability boundary (zero growth rate) 
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FIGURE 3. (a )  Critical Rayleigh number and ( b )  critical z wavenumber as function of Taylor 
number T for onset of stationary convection (solid and dot-dashed lines) and overstable 
convection (dashed lines). a = 0.5 corresponds to annulus with square cross-section, a = co 
to infinite plane case with same boundary conditions at top and bottom. 

is found by interpolation. For overstable convection, enough cases are run to 
find a set of (R, k) pairs at  which the solutions oscillate without growth or decay. 
This must be done because there are two overstable modes excited at  the  same 
Rayleigh number, which propagate in opposite directions around the annulus, 
undergoing linear mutual interference that is periodically constructive and 
destructive. 

In figure 3 (a) ,  the stability boundary for the annulus of square cross-section 
is the solid line, which, as in I, is independent of Prandtl number. Boundaries 
for overstable convection for water (P = 6.8) and air (P = 0.7) are shown near 
the right-hand edge. Corresponding curves for kc are shown in figure 3 (b ) .  For 
comparison, the stationary convection stability boundary without side walls 
(a  = 00) is also shown. From figures 3 we see the following. 

(i) Rotation stabilizes the convection, as in the case without side walls; that 
is R, increases with T, as does k,. 

(ii) At this aspect ratio, theviscouseffects of the side walls axe slightly stabilizing 
for stationary convection. 

(iii) Overstability occurs for Prandtl numbers greater than 0.677, which is 
contrary to the infinite plane case, but similar to the annulus case with free top 
and bottom (see I). 

The structure of the stationary convection is similar to that shown in I, with 
the cell vertical boundaries turned clockwise from a position perpendicular to 
the annulus sides (when viewed from above). A typical example of the horizontal 
planform is shown in figure 4. In  these cells horizontal velocity vectors are tilted 
with respect to longitude such that vectors with a longitudinal component in the 
same sense as the rotation are pointed towards the outer rim, those with the 
opposite sense towards the inner rim. This is caused by the Coriolis forces turning 

25-2 
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FIGURE 4. Cell structure for typical case with rotation (T = lo5, R = 3120, P = 0.7, k = 3.4). 
(a)  Cell vertical velocities a t  midlevel of annulus. ( b )  Cell horizontal velocities a quarter of 
distance up from annulus bottom. 

the flow to the right and gives the outward horizontal transport of momentum. 
The most important difference from the case with a stress-free top and bottom 
is that here the horizontal velocities in the cells fa.11 to zero at  the top and 
bottom, as well as, by symmetry, at the midlevel. 

The overstable convection patterns are time dependent, with the temperature, 
pressure and vertical motion moving in the prograde sense near the inner rim 
and the same amount in the retrograde sense in the outer half. This is because 
the amplitudes of the two overstable modes are individually highly asymmetric 
about the centre-line of the annulus. The resultant horizontal velocity vectors 
rotate with time, in a clockwise sense when viewed from above (see figure 5 for 
an example), which leads to horizontal and also vertical momentum transport 
which reverse with time. Thuswe should expect an oscillatory differential rotation 
from overstable convection, which is described briefly under the nonlinear results. 

5. Nonlinear results 
Calculations for stationary convection are reported in $$5.1-5.5 below and an 

example of overstable convection is given in $5.6.  For stationary convection, the 
numerical solutions always converged to a steady state. The rate of convergence 
was generally fastest for Prandtl numbers of order unity; as P was decreased the 
solutions oscillated for longer periods initially. Most cases were run using as 
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FIGURE 5 .  Sequence of horizontal velocities through a half-cycle of an overstable convective 
oscillation, quarter of way up from annulus bottom (T = lo4, R = 5700, P = 0.7, Ic = 2.9). 
Time step here is 4.5 x iO-4 dimensionless units. 
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FIGURE 6 (a). For legend see facing page. 

initial conditions the end result of a previous case nearby in the parameter space. 
However, as a check on the uniqueness of the results, some cases were run from 
radically different initial conditions. In  all cases studied, the end result was 
sensibly the same. Fairly close to the critical Rayleigh number, we found that in 
general the nonlinear solution for the mean circulation forced by stationary 
convection bore close qualitative resemblance to that predicted in I, except, 
of course, for effects of the no-slip top and bottom boundary conditions. In  that 
regard, we did not go high enough in T to produce thin Ekman layers at  top 
and bottom. 

5.1. Amplitudes 

The amount of mean circulation produced, we find, varies considerably with P, 
T and R. Three examples are shown in figures 6 (u)-(c). In  each, we have plotted 
the total energy U: in the differential rotation and the total energy Vg+ W: in 
the meridional circulation, each measured as a ratio with respect to  the energies 
in the corresponding components of motion in the cells. 

Figure 6 (a)  gives a typical scan in Prandtl number from 25 to  0.025 a t  T = 103, 
for R = 1.2R, = 3120. (Remember that for stationary convection R, is inde- 
pendent of P.) We see that the differential rotation peaks a t  an intermediate 
Prandtl number, between 0.3 and 0.4, while the meridional circulation produced 
increases monotonically as P is decreased. Some less extensive calculations 
carried out scanning through P at other values of T and R indicate similar 
profiles. We note that the maximum differential-rotation energy attained in 
figure 6 (a)  is only about 4 yo of the energy in the same component of motion in 
the cells, corresponding to an r.m.s. amplitude ratio of roughly 20 %. 

One might expect larger ratios to be attained by going to higher R, but a t  these 
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FIGURE 6. - . "  
V,Z+ Wi, respectively) t o  corresponding cell energies for 10 x 10 and 16 x 16 resolution. 
( a )  As functions of Prandtl number; T = lo3, R = 3120, k = 3.4. ( 6 )  A s  functions of R/Rc for 
air (p = 0.7) a t  T = 2000, k = 3.7 ( =  k,). (c) As functions of T for R = 1.2R,(T), P = 0.7 
(air), k = k,(T). 

modest Taylor numbers we find that the ratio peaks not too far above the critical 
value and then falls off again. An example of this is seen in figure 6 ( b ) ,  for 
P = 0.7 (air), T = 2000 and R 6 2Rc, for which UUUZ, peaks a t  about 0.045 for 
R/Rc N 1.35. By contrast, the meridional-circulation energy continues to rise, 
through the range, with no peak in sight. The differential rotation and meridional 
circulation also show markedly different behaviour as T is increased for a given 
P and R/R,(T), as may be seen again for air in figure 6 (c ) .  the differential-rotation 
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FIGURE 7 .  Kinetic energy conversion rates for maintenance of ( a )  the differential rotation 
and ( b )  the meridional circulation as a function of Prandtl number P. See text for definitions. 
T = lo', R = 3120 (=  1.2R,), L = 3.4. ( b )  -, 10 x 10; 0 ,  16 x 16. 

energy increases approximately like T, while the meridional circulation is 
practically constant. There is a very slight change in the slope of the U:lUZ, curve 
a t  larger T, presumably a small nonlinear reaction of the mean circulation on 
the cells, modifying slightly their driving action. 

5.2. Kinetic-energy balance 

The means of maintenance of the differential rotation and meridional circulation 
can easily be found by calculating the kinetic-energy balances implied by (1) 
and ( 2 )  with the left-hand sides equal to zero once the steady state is reached, The 
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maintenance of the differential-rotation and meridional-circulation amplitudes 
shown in figure 6 (a )  is depicted in figures 7 (a )  and (b )  respectively. The conversion 
rates actually plotted are normalized with respect to the dissipation rates D 
and G. Thus in the steady state, the total energy conversion in each case should 
add up to + 1.0. 

We see from figure 7 (a )  that the principal mechanisms for maintenance of the 
differential rotation change markedly with Prandtl number. For P 9 1, the 
Coriolis forces acting on the meridional circulation do most of the work, and the 
upgradient transport of momentum by the Reynolds stresses (ul ~ 1 ~ ) ~  and ( U ~ W ~ ) ~  is 
quite weak. This confirms the calculations of earlier tendencies in I. As P is 
decreased, the Reynolds stresses increase their action relative to the meridional 
circulation, to such a degree that, at  P = 0-7 (air), the differential rotation is 
maintained about 80% by the Reynolds stresses, and only 20% by Coriolis 
forces acting on the meridional circulation. Still further decreases in P draw 
the stresses down again somewhat, but they appear to be levelling off at the 
lowest P studied (0.025). Calculations below this point appeared to be converging 
to a steady state so slowly as to be impractical. Between the two Reynolds stress 
effects, the upgradient vertical transports fall off in effectiveness at small P by 
comparison with the upgradient horizontal transport. 

As may be seen in figure 7 (b) ,  the meridional circulation is maintained at  high 
Prandtl numbers almost exclusively by conversion from potential energy due 
$0 the axisymmetric rising of warm fluid and sinking of cold, while for small P 
it is maintained entirely by Reynolds stresses, in particular ( ~ 2 1 ) ~ .  At all P 
horizontal Coriolis forces extract only a relatively small amount of energy to  
supply to the differential rotation. 

These energy conversion results generally hold for other values of R and T, 
in the range studied (R 6 2BJ. For example, at P = 0.7, R = 1.2RC(27), the 
maintenance of both differential rotation and meridional circulation are relatively 
unchanged as T is increased from zero to the limit of stationary convection. 
As RIRc is increased from 1 to 2, the maintenance of differential rotation by 
vertical momentum transport decreases somewhat and that by Coriolis forces 
a,cting on meridional circulation increases a compensating amount. The main- 
tenance of the meridional circulation itself is virtually unchanged. 

5.3. Interpretation of amplitudes and kinetic-energy balance 

At high P, the thermal diffusivity K is small, relative to v, so the temperature 
perturbations 8, are large compared with the velocities ul, v1 and wl. Because 
the velocities are small, owing to large v, the Reynolds stresses are all very small 
and play little role in maintenance of secondary circulations. The meridional 
circulation (vo, wo) becomes small compared with (vl, wl), because it is driven by 
the variations in 8, produced by the transports (w18,), and ( ~ ~ 8 ~ ) ~  which are 
small because v1 and w1 are small. The differential rotation uo is very small 
compared with the cell velocities because the Reynolds stresses ( U ~ V ~ ) ~  and 
(u1wJ0 are small, the weak meridional circulation (vo, wo) produces small Coriolis 
forces, and the large viscosity depletes uo. 

As P is decreased, the Reynolds stresses, being quadratic in the velocities, 
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grow faster than the Coriolis forces due to meridional circulation, and the dif- 
ferential rotation becomes maintained more and more by them. As P drops much 
below unity, the viscous resistance is less, but the relatively large thermal 
diffusivity now starts to wipe out temperature differences. Consequently, the 
maintenance of the meridional circulation is more and more by the Reynolds 
stresses, particularly w: because it is a maximum in the middle of the annulus 
cross-section. This is true even without rotation. 

It is clear from figures 6 (c) and 7 (b)  that the meridional circulation is little 
affected by rotation. The meridional circulation is present principally because 
the no-slip walls force the thermal and Reynolds stresses to vanish there. Since 
they are non-zero in the interior, variations with y result and drive (vo, w,,). 

The presence of differential rotation, on the other hand, is tied directly to 
the rotation. For fixed T, as P decreases, the circulation time in the cells, which 
is of order d 2 / K  or less, becomes short compared with the Coriolis time (2!2)4, 
so the Coriolis forces distort the cells less, and produce smaller Reynolds stresses. 
The Coriolisforces in the x direction due to themeridional circulation are therefore 
also less. The vertical Reynolds stress (ulwl)o falls off even faster than the 
horizontal component because it is produced only indirectly through continuity 
of mass whiIe ( U ~ Z I ~ ) ~  is produced directly by Coriolis forces. 

The peak in relative energy in the differential rotation as R/R, increases 
(figure 6 ( b ) )  occurs for the same reason. Here the circulation time becomes 
short compared with the Coriolis time because of increasing velocity amplitude. 
The meridional circulation keeps on growing because the variations in Oo and 
the stresses v; and w: continue to rise, since they do not depend on rotation for 
their existence. 

5.4. Total heat transport 

The total heat transport (by conduction, in the cells, and the induced meridional 
circulation) or Nusselt number Nu is shown in figures S(a),  (b )  and ( c )  for the 
same values P, R/Rc and T, respectively, as for the kinetic energy given in 
figures 6(a ) ,  (b )  and (c). The general shape of the Nu curve as a function of P 
is the same as for the T = 0 case (not plotted) except that, for R the same per- 
centage above R,, Nu is higher in the rotating case except for very small P,  for 
which the influence of T is small. For large P, Nu is independent of P; for small P, 
Nu falls off sharply as the high thermal diffusivity wipes out temperature 
gradients. This is similar to the infinite plane case (Rossby 1969). The Nusselt 
number dependence on R/Rc (figure 8 (c)) is also similar to the non-rotating case, 
and the rise of Nu is rather close to the experimental results summarized by 
Chandrasekhar (1961)) indicating that at this aspect ratio the side walls have only 
modest effects on the heat flux. 

It is clear from all of figures 8 (a ) ,  ( b )  and (c) that the low resolution (10 x 10) 
model consistently overestimates the heat flux. At high P, this is presumably 
because viscous dissipation in high shear areas, i.e. near the top, bottom and side 
boundaries, is underestimated, so that larger velocities and therefore heat 
transport are allowed. At small P, the thermal diffusion which would tend to 
reduce buoyancy forces and heat transports is underestimated. In  terms of 
percentages, these low estimates are more serious than in the case of the 
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T 

FIGURE 9. Tilt angle of vertical convective cell boundaries at centre of annulus cross- 
section. ( a )  For both linear and nonlinear cases as function of Taylor number T with P = 0.7 
(air)andR = 1*2R,(T) (asinfigures 6(c)and8(c)).(b)AsafunctionofR/RCforT = 2 x103, 
P = 0.7 (asinfigures 6 ( b )  and 8 ( b ) ) .  

kinetic-energy ratios, presumably because both the numerator and denominator 
of those ratios change in the same sense as the resolution is changed. 

5.5. Cell structure changes 

As the Taylor number increases, the vertical cell boundaries in the stationary 
convection tilt more and more away from the position perpendicular to the sides. 
For example, figure 9 (a )  shows the tilt angle for the linear solutions with P = 0.7 
and R = 1.2R, (positive angles represent clockwise tilt when viewed from above). 
Through the range T < 3 x 103, where stationary convection is preferred, the 
angle increases monotonically to almost 45". Now, in the nonlinear case, the 
differential rotation and meridional circulation that develop strongly reduce the 
amount of this tilt. For example, by T = 2 x lo3, the tilt is almost 30" less in the 
nonlinear case. This is true even though the amount of energy in the differential 
rotation is only about 4 % of the energy in the same component of cell motion. 
In addition, the tilt angle continues to decrease as R/Rc is increased even beyond 
the peak relative kinetic energy in the differential rotation. Figure 9 ( b ) ,  for 
example, shows that, for T = 2 x lo3 and P = 0.7, the angle actually reverses 
near R = 1.4Rc, reaching N - 20" by R = 2.0R,. What is in fact happening is 
that the mean circulations are bending the cell boundaries from a slanted straight 
line into an S shape (figure lo), which is indicative of the horizontal shearing 
action of the induced differential rotation. Figure I0 shows this effect where it 
is strongest, namely, a t  the midlevel of the annulus. A plot of the boundary 
in an x, x plane (not shown) would indicate a bulge in the +x direction in the 
outer half of the annulus, and an opposite bulge in the inner half, corresponding 
to the action of the vertical shear in the differential rotation. 

That the distortion of the cell boundaries by the mean circulations, particularly 
the differential rotation, continues to increase with R/R, even after the relative 
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FIGURE 10. Profiles of cell vertical boundary as function of R/Ro at 
mid-level of annulus. T = 2 x lo3, P = 0.7,  k = 3-7. 

peak in differential rotation amplitude is passed is due to the fact that distortion 
of the cell boundaries is related to the absolute value of uo, which is displacing 
them up- and downstream. This displacement effect is strongest at midlevels 
because the differential rotation is largest there and because the cell motion is 
essentially vertical there; columns of rising and sinking warm and cold fluid are 
simply displaced up- and downstream. 

In sum, then, the reaction of the mean circulation on the cells is to distort their 
boundaries qualitatively like the profiles of differential rotation. From linear 
theory, a mean shear would tend to favour cells elongated in the x direction, 
but since our x wavenumber k is fixed it would be difficult for this to show up 
unless longitudinal rolls (1; = 0) were strongly favoured. In  the parameter range 
studied no transition to longitudinal rolls was found. It ispossible, of course, that, 
with subharmonic modes allowed, these might tend to be excited more by the 
presence of the shear, and, with sufficient shear, actually become larger in 
amplitude than the originally most unstable mode. 

5.6. Overstability 

As suggested from figure 5, finite amplitude overstable convection in the annulus 
should lead to an oscillatory differential rotation. In  figure 5, we can see that, 
at  timesteps 3100and 3300, momentum is being transported horizontally towards 
the outer rim just asin the stationary convection cases studiedearlier (figure 1 (c)). 
The vertical momentum transport is also similar (figure 1 (d) ) .  However, with 
the rotation of the velocity vectors, by step 3500, the bulk of the horizontal 
transports has been reversed and is now toward the inner rim. This remains true 
for step 3700. The vertical transports are also reversed. By step 3900, the sense 
of transport is reversed again. In  the cells, the evolution from step 3100 to step 
4100 represents slightly less than half a period, as evidenced by the fact that the 
two sets of arrows are almost 180' out of phase with each other. 

The evolution of the mean circulations due to this overstable convection 
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FIcxnuc 11 (a )  Differential-rotation energy and ( b )  energy conversion rates (lower figure) 
for half-cycle of an overstable convective oscillation with T = lo4, R = 5700, P = 0.7, 
k = 2.9 (as in figure 5). 

would require many figures to describe in detail, so we content ourselves here with 
a qualitative description of the structure together with a closer examination of 
the energetics of the cycle, which are shown in figure i 1, for the same phases as the 
cell horizontal velocities shown in figure 5 .  

Around time step 3040, the momentum transports have built up to its peak in 
energy a differential-rotation profile very much like figure i(a), with faster 
rotation in the outer half of the annulus and slower rotation in the inner half. This 
peak (see figure I 1  ( a ) )  then falls off, as the horizontal and vertical transports 
change direction, until a lesser peak of differential rotation of the opposite sense is 
built up by around step 3600. This is then destroyed by the momentum transport 
reversing again and building up the larger peak of differential rotation with fast 
flow in the outer half, by about step 4080. This pattern then repeats about every 
1040 steps for the particular case studied. The mericlional circulation also changes, 
but is weaker in energy than the differential rotation by a factor of 300 or so, 
so we do not discuss it in detail. 

The maintenance of the energy in the differential rotation is shown in 
figure 1 1  (b) .  We see that the Coriolis forces acting on the meridional circulation 
have a very small effect a t  all phases of the cycle. The work is done almost 
entirely by the Reynolds stresses. The horizontal and vertical transport suc- 
cessively tear down one peak and build up the next, tearing down when 
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C = B + C + A is less than unity (the frictional loss rate) and building up when 
greater than unity. We note, however, that these integrals are never actually 
negative during any part of the cycle. In  other words, the net flux of momentum 
is always u p  the gradient of differential rotation, even though those gradients 
are continuously evolving, and periodically changing sign. At some times during 
the cycle, however, there is downgradient momentum flux in some parts of the 
annulus cross-section, and this leads to the reversal in the sense of differential 
rotation. 

From figure 11, it is clear that if we were to average the velocities and stresses 
over a cycle, we would get non-zero values; that is, the oscillation is not sym- 
metric about zero. This is a natural consequence of the overstable convection. 
As we said earlier, in the linear case there are two overstable modes which 
propagate in opposite directions. We may therefore think of these as having 
frequencies f w. The induced axisymmetric circulations arise from the Reynolds 
and thermal stresses due to self-coupling and cross-coupling of these modes. 
The self-coupling gives rise to stresses that are independent of time which force 
the non-zero time-mean axisymmetric circulations, while the cross-coupling 
yields stresses and therefore axisymmetrie circulations with period 2w which 
produce the variations seen in figure 11. The total induced circulations, then, are 
a combination of these. 

In  these finite amplitude overstable solutions, the nature of overstability as 
an inertial oscillation comes through quite clearly, in that, while the kinetic 
energy in the individual components of horizontal motion oscillates from 
essentially zero to peak amplitudes, the total kinetic energy varies by only 
about 7 %  through the cycle. The Nusselt number varies only between about 
1-36 and 1.42 for the particular example studied. The peak kinetic energy in the 
differential rotation (at the major peaks in the cycle) is approximately 14 % of the 
energy in an average horizontal component of motion. 

6. Concluding remarks 
To the writer’s knowledge, the results presented above represent the first 

nonlinear study of convection in a rotating annulus in which the bottom heating 
is uniform. We have fairly systematically surveyed nonlinear cases near the 
critical Rayleigh number for stationary convection, and presented what we 
believe to be a typical example of the overstable case. Clearly, however, much 
more could be done. Increasing R further above the critical value requires the 
presence of additional modes and eventually more points in the cross-section 
grid. The transition between stationary and overstable nonlinear convection 
should be studied, as well as the production of other modes due to nonlinear effects. 

The original motivation for I and this study was the problem of the solar 
differential rotation. In  this context, our results are in some respects dis- 
appointing. We did achieve fast rotation of the outer half of the annulus, corre- 
sponding roughly to the equatorial acceleration on the Sun, but the amplitude 
of this low latitude ‘acceleration’ is, for the Taylor numbers we considered, 
rather small compared with that of the forcing cells. Solar observations, e.g. 
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Howard & Harvey (1970), Howard (1971), indicate the cells should be in fact 
no larger, and perhaps smaller, in amplitude than the differential rotation. Even 
so, our model did show considerable distortion of the cell boundaries into shapes 
roughly following the differential-rotation profile, some indirect evidence for 
which can be seen in the solar magnetic fields (Starr & Gilman 1965; Simon & 
Weiss 1968; and others). The relative amplitude possible in the differential 
rotation compared with that in the cells does increase with T ,  but we also get 
overstability and resulting large oscillations in the differential rotation. This 
probably does not happen in solar equatorial regions, where rotation is nearly 
perpendicular to gravity rather than parallel to it as in our model. Instead we 
shall get a convectively excited Rossby wave, along the lines modelled by Busse 
(1970), Durney (1970, 1971) and Gilman (1972). 

The results we have presented should be confirmable by laboratory experiment. 
Except for the initial scans in Prandtl number, w0 have concentrated on the 
case P = 0.7, i.e. air, because it is a common fluid for which the Reynolds stress 
and differential-rotation effects should be significant. Water (P = 6*8),  which is 
perhaps easier to use experimentally, will unfortunately show much smaller 
relative differential rotation. 

The writer wishes to express his thanks to Mr Jack Miller, of the NCAR Com- 
puting Facility, for his careful programming of all computations reported in this 
paper. 
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